Installation ============ Compatibility ------------- Numba is compatible with Python 3.7--3.10, and Numpy versions 1.21--1.24. Our supported platforms are: * Linux x86 (32-bit and 64-bit) * Linux ppcle64 (POWER8, POWER9) * Windows 7 and later (32-bit and 64-bit) * OS X 10.9 and later (64-bit and unofficial support on M1/Arm64) * \*BSD (unofficial support only) * NVIDIA GPUs of compute capability 5.3 and later * Compute capabilities 3.5 - 5.2 are supported, but deprecated. * ARMv7 (32-bit little-endian, such as Raspberry Pi 2 and 3) * ARMv8 (64-bit little-endian, such as the NVIDIA Jetson) :ref:`numba-parallel` is only available on 64-bit platforms. Installing using conda on x86/x86_64/POWER Platforms ---------------------------------------------------- The easiest way to install Numba and get updates is by using ``conda``, a cross-platform package manager and software distribution maintained by Anaconda, Inc. You can either use `Anaconda `_ to get the full stack in one download, or `Miniconda `_ which will install the minimum packages required for a conda environment. Once you have conda installed, just type:: $ conda install numba or:: $ conda update numba Note that Numba, like Anaconda, only supports PPC in 64-bit little-endian mode. To enable CUDA GPU support for Numba, install the latest `graphics drivers from NVIDIA `_ for your platform. (Note that the open source Nouveau drivers shipped by default with many Linux distributions do not support CUDA.) Then install the ``cudatoolkit`` package:: $ conda install cudatoolkit You do not need to install the CUDA SDK from NVIDIA. Installing using pip on x86/x86_64 Platforms -------------------------------------------- Binary wheels for Windows, Mac, and Linux are also available from `PyPI `_. You can install Numba using ``pip``:: $ pip install numba This will download all of the needed dependencies as well. You do not need to have LLVM installed to use Numba (in fact, Numba will ignore all LLVM versions installed on the system) as the required components are bundled into the llvmlite wheel. To use CUDA with Numba installed by `pip`, you need to install the `CUDA SDK `_ from NVIDIA. Please refer to :ref:`cudatoolkit-lookup` for details. Numba can also detect CUDA libraries installed system-wide on Linux. .. _numba-install-armv7: Installing on Linux ARMv7 Platforms ----------------------------------- `Berryconda `_ is a conda-based Python distribution for the Raspberry Pi. We are now uploading packages to the ``numba`` channel on Anaconda Cloud for 32-bit little-endian, ARMv7-based boards, which currently includes the Raspberry Pi 2 and 3, but not the Pi 1 or Zero. These can be installed using conda from the ``numba`` channel:: $ conda install -c numba numba Berryconda and Numba may work on other Linux-based ARMv7 systems, but this has not been tested. Installing on Linux ARMv8 (AArch64) Platforms --------------------------------------------- We build and test conda packages on the `NVIDIA Jetson TX2 `_, but they are likely to work for other AArch64 platforms. (Note that while the Raspberry Pi CPU is 64-bit, Raspbian runs it in 32-bit mode, so look at :ref:`numba-install-armv7` instead.) Conda-forge support for AArch64 is still quite experimental and packages are limited, but it does work enough for Numba to build and pass tests. To set up the environment: * Install `miniforge `_. This will create a minimal conda environment. * Then you can install Numba from the ``numba`` channel:: $ conda install -c numba numba On CUDA-enabled systems, like the Jetson, the CUDA toolkit should be automatically detected in the environment. .. _numba-source-install-instructions: Installing from source ---------------------- Installing Numba from source is fairly straightforward (similar to other Python packages), but installing `llvmlite `_ can be quite challenging due to the need for a special LLVM build. If you are building from source for the purposes of Numba development, see :ref:`buildenv` for details on how to create a Numba development environment with conda. If you are building Numba from source for other reasons, first follow the `llvmlite installation guide `_. Once that is completed, you can download the latest Numba source code from `Github `_:: $ git clone git://github.com/numba/numba.git Source archives of the latest release can also be found on `PyPI `_. In addition to ``llvmlite``, you will also need: * A C compiler compatible with your Python installation. If you are using Anaconda, you can use the following conda packages: * Linux ``x86``: ``gcc_linux-32`` and ``gxx_linux-32`` * Linux ``x86_64``: ``gcc_linux-64`` and ``gxx_linux-64`` * Linux ``POWER``: ``gcc_linux-ppc64le`` and ``gxx_linux-ppc64le`` * Linux ``ARM``: no conda packages, use the system compiler * Mac OSX: ``clang_osx-64`` and ``clangxx_osx-64`` or the system compiler at ``/usr/bin/clang`` (Mojave onwards) * Mac OSX (M1): ``clang_osx-arm64`` and ``clangxx_osx-arm64`` * Windows: a version of Visual Studio appropriate for the Python version in use * `NumPy `_ Then you can build and install Numba from the top level of the source tree:: $ python setup.py install .. _numba-source-install-env_vars: Build time environment variables and configuration of optional components ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Below are environment variables that are applicable to altering how Numba would otherwise build by default along with information on configuration options. .. envvar:: NUMBA_DISABLE_OPENMP (default: not set) To disable compilation of the OpenMP threading backend set this environment variable to a non-empty string when building. If not set (default): * For Linux and Windows it is necessary to provide OpenMP C headers and runtime libraries compatible with the compiler tool chain mentioned above, and for these to be accessible to the compiler via standard flags. * For OSX the conda package ``llvm-openmp`` provides suitable C headers and libraries. If the compilation requirements are not met the OpenMP threading backend will not be compiled. .. envvar:: NUMBA_DISABLE_TBB (default: not set) To disable the compilation of the TBB threading backend set this environment variable to a non-empty string when building. If not set (default) the TBB C headers and libraries must be available at compile time. If building with ``conda build`` this requirement can be met by installing the ``tbb-devel`` package. If not building with ``conda build`` the requirement can be met via a system installation of TBB or through the use of the ``TBBROOT`` environment variable to provide the location of the TBB installation. For more information about setting ``TBBROOT`` see the `Intel documentation `_. .. _numba-source-install-check: Dependency List --------------- Numba has numerous required and optional dependencies which additionally may vary with target operating system and hardware. The following lists them all (as of July 2020). * Required build time: * ``setuptools`` * ``numpy`` * ``llvmlite`` * Compiler toolchain mentioned above * Required run time: * ``setuptools`` * ``numpy`` * ``llvmlite`` * Optional build time: See :ref:`numba-source-install-env_vars` for more details about additional options for the configuration and specification of these optional components. * ``llvm-openmp`` (OSX) - provides headers for compiling OpenMP support into Numba's threading backend * ``tbb-devel`` - provides TBB headers/libraries for compiling TBB support into Numba's threading backend (2021 <= version < 2021.6 required). * ``importlib_metadata`` (for Python versions < 3.9) * Optional runtime are: * ``scipy`` - provides cython bindings used in Numba's ``np.linalg.*`` support * ``tbb`` - provides the TBB runtime libraries used by Numba's TBB threading backend (version >= 2021 required). * ``jinja2`` - for "pretty" type annotation output (HTML) via the ``numba`` CLI * ``cffi`` - permits use of CFFI bindings in Numba compiled functions * ``llvm-openmp`` - (OSX) provides OpenMP library support for Numba's OpenMP threading backend. * ``intel-openmp`` - (OSX) provides an alternative OpenMP library for use with Numba's OpenMP threading backend. * ``ipython`` - if in use, caching will use IPython's cache directories/caching still works * ``pyyaml`` - permits the use of a ``.numba_config.yaml`` file for storing per project configuration options * ``colorama`` - makes error message highlighting work * ``icc_rt`` - (numba channel) allows Numba to use Intel SVML for extra performance * ``pygments`` - for "pretty" type annotation * ``gdb`` as an executable on the ``$PATH`` - if you would like to use the gdb support * Compiler toolchain mentioned above, if you would like to use ``pycc`` for Ahead-of-Time (AOT) compilation * ``r2pipe`` - required for assembly CFG inspection. * ``radare2`` as an executable on the ``$PATH`` - required for assembly CFG inspection. `See here `_ for information on obtaining and installing. * ``graphviz`` - for some CFG inspection functionality. * ``pickle5`` - provides Python 3.8 pickling features for faster pickling in Python 3.7. * ``typeguard`` - used by ``runtests.py`` for :ref:`runtime type-checking `. * ``cuda-python`` - The NVIDIA CUDA Python bindings. See :ref:`cuda-bindings`. Numba requires Version 11.6 or greater. * To build the documentation: * ``sphinx`` * ``pygments`` * ``sphinx_rtd_theme`` * ``numpydoc`` * ``make`` as an executable on the ``$PATH`` .. _numba_support_info: Version support information --------------------------- This is the canonical reference for information concerning which versions of Numba's dependencies were tested and known to work against a given version of Numba. Other versions of the dependencies (especially NumPy) may work reasonably well but were not tested. The use of ``x`` in a version number indicates all patch levels supported. The use of ``?`` as a version is due to missing information. +----------++--------------+---------------------------+----------------------------+------------------------------+-------------------+-----------------------------+ | Numba | Release date | Python | NumPy | llvmlite | LLVM | TBB | +===========+==============+===========================+============================+==============================+===================+=============================+ | 0.57.0 | TBC | 3.8.x <= version < 3.12 | 1.21 <= version < 1.24 | 0.40.x | 11.x | 2021.x | +-----------+--------------+---------------------------+----------------------------+------------------------------+-------------------+-----------------------------+ | 0.56.4 | 2022-11-03 | 3.7.x <= version < 3.11 | 1.18 <= version < 1.24 | 0.39.x | 11.x | 2021.x | +-----------+--------------+---------------------------+----------------------------+------------------------------+-------------------+-----------------------------+ | 0.56.3 | 2022-10-13 | 3.7.x <= version < 3.11 | 1.18 <= version < 1.24 | 0.39.x | 11.x | 2021.x | +-----------+--------------+---------------------------+----------------------------+------------------------------+-------------------+-----------------------------+ | 0.56.2 | 2022-09-01 | 3.7.x <= version < 3.11 | 1.18 <= version < 1.24 | 0.39.x | 11.x | 2021.x | +-----------+--------------+---------------------------+----------------------------+------------------------------+-------------------+-----------------------------+ | 0.56.0 | 2022-07-25 | 3.7.x <= version < 3.11 | 1.18 <= version < 1.23 | 0.39.x | 11.x | 2021.x | +-----------+--------------+---------------------------+----------------------------+------------------------------+-------------------+-----------------------------+ | 0.55.2 | 2022-05-25 | 3.7.x <= version < 3.11 | 1.18 <= version < 1.23 | 0.38.x | 11.x | 2021.x | +-----------+--------------+---------------------------+----------------------------+------------------------------+-------------------+-----------------------------+ | 0.55.{0,1}| 2022-01-13 | 3.7.x <= version < 3.11 | 1.18 <= version < 1.22 | 0.38.x | 11.x | 2021.x | +-----------+--------------+---------------------------+----------------------------+------------------------------+-------------------+-----------------------------+ | 0.54.x | 2021-08-19 | 3.6.x <= version < 3.10 | 1.17 <= version < 1.21 | 0.37.x | 11.x | 2021.x | +-----------+--------------+---------------------------+----------------------------+------------------------------+-------------------+-----------------------------+ | 0.53.x | 2021-03-11 | 3.6.x <= version < 3.10 | 1.15 <= version < 1.21 | 0.36.x | 11.x | 2019.5 <= version < 2021.4 | +-----------+--------------+---------------------------+----------------------------+------------------------------+-------------------+-----------------------------+ | 0.52.x | 2020-11-30 | 3.6.x <= version < 3.9 | 1.15 <= version < 1.20 | 0.35.x | 10.x | 2019.5 <= version < 2020.3 | | | | | | | (9.x for aarch64) | | +-----------+--------------+---------------------------+----------------------------+------------------------------+-------------------+-----------------------------+ | 0.51.x | 2020-08-12 | 3.6.x <= version < 3.9 | 1.15 <= version < 1.19 | 0.34.x | 10.x | 2019.5 <= version < 2020.0 | | | | | | | (9.x for aarch64) | | +-----------+--------------+---------------------------+----------------------------+------------------------------+-------------------+-----------------------------+ | 0.50.x | 2020-06-10 | 3.6.x <= version < 3.9 | 1.15 <= version < 1.19 | 0.33.x | 9.x | 2019.5 <= version < 2020.0 | +-----------+--------------+---------------------------+----------------------------+------------------------------+-------------------+-----------------------------+ | 0.49.x | 2020-04-16 | 3.6.x <= version < 3.9 | 1.15 <= version < 1.18 | 0.31.x <= version < 0.33.x | 9.x | 2019.5 <= version < 2020.0 | +-----------+--------------+---------------------------+----------------------------+------------------------------+-------------------+-----------------------------+ | 0.48.x | 2020-01-27 | 3.6.x <= version < 3.9 | 1.15 <= version < 1.18 | 0.31.x | 8.x | 2018.0.5 <= version < ? | | | | | | | (7.x for ppc64le) | | +-----------+--------------+---------------------------+----------------------------+------------------------------+-------------------+-----------------------------+ | 0.47.x | 2020-01-02 | 3.5.x <= version < 3.9; | 1.15 <= version < 1.18 | 0.30.x | 8.x | 2018.0.5 <= version < ? | | | | version == 2.7.x | | | (7.x for ppc64le) | | +-----------+--------------+---------------------------+----------------------------+------------------------------+-------------------+-----------------------------+ Checking your installation -------------------------- You should be able to import Numba from the Python prompt:: $ python Python 3.10.2 | packaged by conda-forge | (main, Jan 14 2022, 08:02:09) [GCC 9.4.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> import numba >>> numba.__version__ '0.55.1' You can also try executing the ``numba --sysinfo`` (or ``numba -s`` for short) command to report information about your system capabilities. See :ref:`cli` for further information. :: $ numba -s System info: -------------------------------------------------------------------------------- __Time Stamp__ Report started (local time) : 2022-01-18 10:35:08.981319 __Hardware Information__ Machine : x86_64 CPU Name : skylake-avx512 CPU Count : 12 CPU Features : 64bit adx aes avx avx2 avx512bw avx512cd avx512dq avx512f avx512vl bmi bmi2 clflushopt clwb cmov cx16 cx8 f16c fma fsgsbase fxsr invpcid lzcnt mmx movbe pclmul pku popcnt prfchw rdrnd rdseed rtm sahf sse sse2 sse3 sse4.1 sse4.2 ssse3 xsave xsavec xsaveopt xsaves __OS Information__ Platform Name : Linux-5.4.0-94-generic-x86_64-with-glibc2.31 Platform Release : 5.4.0-94-generic OS Name : Linux OS Version : #106-Ubuntu SMP Thu Jan 6 23:58:14 UTC 2022 __Python Information__ Python Compiler : GCC 9.4.0 Python Implementation : CPython Python Version : 3.10.2 Python Locale : en_GB.UTF-8 __LLVM information__ LLVM Version : 11.1.0 __CUDA Information__ Found 1 CUDA devices id 0 b'Quadro RTX 8000' [SUPPORTED] Compute Capability: 7.5 PCI Device ID: 0 PCI Bus ID: 21 UUID: GPU-e6489c45-5b68-3b03-bab7-0e7c8e809643 Watchdog: Enabled FP32/FP64 Performance Ratio: 32 (output truncated due to length)